Теорвер

Сл. События

Сл. Величины

Моменты

ЗБЧ и ЦПТ

 

 

Вам, возможно, сюда?

ТеорВер: ЗБЧ и ЦПТ в теории.
Центральная предельная теорема в форме Ляпунова.

Теорема Ляпунова представляет из себя неплохой критерий применимости ЦПТ к сумме случайных величин, а заодно иллюстрирует какими должны быть случайные величины, чтобы можно было применять ЦПТ.

Т. (Ляпунова) Если случайные величины X1, X2, … Xn взаимно независимы; имеют математические ожидания m1, m2, … mn, дисперсии D1, D2, … Dn и третий абсолютный центральный момент, тогда при выполнении условия :

Распределение суммы этих величин близко к нормальному.

 

Условие Ляпунова означает, что отклонение от нормального закона распределения, вносимое в распределение суммы величин каждым из отдельных слагаемых, должно быть ничтожно мало. Заметим, что вклад каждой из случайных величин сокращается при росте их числа, поэтому суммы большого числа любых случайных слагаемых, как правило, является нормальным.


Нужна дополнительная информация по теме? Попробуйте следующее:

Центральная предельная теорема для одинаково распределенных случайных величин.
 
Когда среднее перестает быть случайным.
 
БольшАя версия параграфа
 Вернуться в раздел: ЗБЧ и ЦПТ в теории.

Рег. № :
Пароль :

или зарегистрироваться
Введите Рег № и Пароль,
а затем выберите
Параграф или № задания,
чтобы увидеть
полный текст или подробное решение

Нужна еще информация? Воспользуйтесь поиском:

     

Coun ters